Towards a low-cost embedded vehicle counting system based on deep-learning for traffic management applications

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This paper explores the feasibility of using a low-cost embedded system for real-time vehicle detection and counting through the use of deep neural networks. It compares the performance of two different object tracking methods, the Kalman filter with the Hungarian algorithm and the centroid tracking algorithm. The experimentation proved that the efficiency of the implemented algorithms was above the 92% and 98% for the centroid tracking algorithm and Kalman filter with the Hungarian algorithm, respectively. Also, the Kalman filter produced fewer errors overcoming the centroid tracking algorithm.

Idioma originalInglés
Título de la publicación alojada2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665408738
DOI
EstadoPublicada - 2021
Evento2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021 - Virtual, Online, Chile
Duración: 6 dic. 20219 dic. 2021

Serie de la publicación

Nombre2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021

Conferencia

Conferencia2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
País/TerritorioChile
CiudadVirtual, Online
Período6/12/219/12/21

Huella

Profundice en los temas de investigación de 'Towards a low-cost embedded vehicle counting system based on deep-learning for traffic management applications'. En conjunto forman una huella única.

Citar esto