Towards a low-cost embedded vision-based occupancy recognition system for energy management applications

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This paper focuses on the development of a low-cost real-time occupancy detection system for people using convolutional neural networks. The proposed detector was implemented in an embedded system composed of a Raspberry Pi 3, an Intel neural computer stick accelerator, and a control circuit containing a relay, a transistor, and the Raspberry output ports. The model was calibrated by varying two parameters: intersection-over-union score and probability size, both necessary to achieve high level of confidence when detecting a person. An experiment was carried out as proof of concept of the system under different test scenarios such as walking fast with poor and optimal lighting conditions and strolling with good lighting. As result, the system obtained a confidence level above the 80% on all test scenarios.

Idioma originalInglés
Título de la publicación alojada2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665408738
DOI
EstadoPublicada - 2021
Evento2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021 - Virtual, Online, Chile
Duración: 6 dic. 20219 dic. 2021

Serie de la publicación

Nombre2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021

Conferencia

Conferencia2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
País/TerritorioChile
CiudadVirtual, Online
Período6/12/219/12/21

Huella

Profundice en los temas de investigación de 'Towards a low-cost embedded vision-based occupancy recognition system for energy management applications'. En conjunto forman una huella única.

Citar esto