Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis

Bruno S. Souza, Jose R. Mora, Eduardo H. Wanderlind, Rosilene M. Clementin, Jose C. Gesser, Haidi D. Fiedler, Faruk Nome, Fredric M. Menger

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

Aspartic proteinases, which include HIV-1 proteinase, function with two aspartate carboxy groups at the active site. This relationship has been modeled in a system possessing an otherwise unactivated amide positioned between two carboxy groups. The model amide is cleaved at an enzyme-like rate that renders the amide nonisolable at 35 °C and pH 4 owing to the joint presence of carboxy and carboxylate groups. A currently advanced theory attributing almost the entire catalytic power of enzymes to electrostatic reorganization is shown to be superfluous when suitable interatomic interactions are present. Our kinetic results are consistent with spatiotemporal concepts where embedding the amide group between two carboxylic moieties in proper geometries, at distances less than the diameter of water, leads to enzyme-like rate enhancements. Space and time are the essence of enzyme catalysis.

Idioma originalInglés
Páginas (desde-hasta)5345-5348
Número de páginas4
PublicaciónAngewandte Chemie - International Edition
Volumen56
N.º19
DOI
EstadoPublicada - 2 may. 2017

Huella

Profundice en los temas de investigación de 'Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis'. En conjunto forman una huella única.

Citar esto