Tree-antimagicness of disconnected graphs

Martin Bača, Zuzana Kimáková, Andrea Semaničová-Feňovčíková, Muhammad Awais Umar

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)


A simple graph G admits an H -covering if every edge in E (G) belongs to a subgraph of G isomorphic to H. The graph G is said to be (a, d)- H -antimagic if there exists a bijection from the vertex set V (G) and the edge set E (G) onto the set of integers 1, 2,., V G + E (G) such that, for all subgraphs H ′ of G isomorphic to H, the sum of labels of all vertices and edges belonging to H ′ constitute the arithmetic progression with the initial term a and the common difference d. G is said to be a super (a, d)- H -antimagic if the smallest possible labels appear on the vertices. In this paper, we study super tree-antimagic total labelings of disjoint union of graphs.

Idioma originalInglés
Número de artículo504251
PublicaciónMathematical Problems in Engineering
EstadoPublicada - 15 ene. 2015
Publicado de forma externa


Profundice en los temas de investigación de 'Tree-antimagicness of disconnected graphs'. En conjunto forman una huella única.

Citar esto