Two constructions of H-antimagic graphs

Andrea Semaničová-Feňovčíková, Martin Bača, Marcela Lascsáková

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

Let H be a graph. A graph G=(V,E) admits an H-covering if every edge in E belongs to a subgraph of G isomorphic to H. A graph G admitting an H-covering is called (a,d)-H-antimagic if there is a bijection f:V(G)∪E(G)→{1,2,…,|V(G)|+|E(G)|} such that for each subgraph H of G isomorphic to H, the sum of labels of all the edges and vertices belonged to H constitute the arithmetic progression with the initial term a and the common difference d. Such a graph is called super if f(V(G))={1,2,3,…,|V(G)|}. In this paper, we provide two constructions of (super) H-antimagic graphs obtained from smaller (super) H-antimagic graphs.

Idioma originalInglés
Páginas (desde-hasta)42-47
Número de páginas6
PublicaciónAKCE International Journal of Graphs and Combinatorics
Volumen14
N.º1
DOI
EstadoPublicada - abr. 2017
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Two constructions of H-antimagic graphs'. En conjunto forman una huella única.

Citar esto