Typical Testor Selection Process for Classification Models

Mateo Martínez-Mejía, Eduardo Alba-Cabrera, Noel Pérez-Pérez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This work develops a process based on Testor Theory and new ideas related to this field that allows a ranking of typical testors based on the similarity between objects from the same class and the dissimilarity between objects from different classes. This process allows us to select the typical testors that will perform effectively to reduce the number of features in a dataset. We validate this process by examining the results obtained from a classification model for three different datasets, using the best and worst-ranked typical testors selected by the algorithm. Lastly, we analyze the results obtained and present the effectiveness of the method, as well as the advantages it brings.

Idioma originalInglés
Título de la publicación alojadaIntelligent Systems and Applications - Proceedings of the 2024 Intelligent Systems Conference IntelliSys Volume 3
EditoresKohei Arai
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas512-524
Número de páginas13
ISBN (versión impresa)9783031664304
DOI
EstadoPublicada - 2024
EventoIntelligent Systems Conference, IntelliSys 2024 - Amsterdam, Países Bajos
Duración: 5 sep. 20246 sep. 2024

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen1067 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaIntelligent Systems Conference, IntelliSys 2024
País/TerritorioPaíses Bajos
CiudadAmsterdam
Período5/09/246/09/24

Huella

Profundice en los temas de investigación de 'Typical Testor Selection Process for Classification Models'. En conjunto forman una huella única.

Citar esto