Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells

Steven R. Blumen, Kai Cheng, Maria E. Ramos-Nino, Douglas J. Taatjes, Daniel J. Weiss, Christopher C. Landry, Brooke T. Mossman

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

66 Citas (Scopus)

Resumen

Lung cancers, malignant mesotheliomas (MM), and fibrosis are devastating diseases with limited treatment strategies, in part due to poorly-effective drug delivery to affected areas of lung. We hypothesized that acid-prepared mesoporous spheres (APMS) (1-2 μm diameter, 40 Å pore size) might be effective vehicles for pulmonary chemotherapeutic drug delivery. To assess this, APMS, chemically modified with different surface molecules (lipid, a linker having a terminal amine group, a thiol group, or tetraethylene glycol [TEG]), were evaluated for uptake and possible cytotoxic effects after in vitro administration to murine alveolar epithelial Type II (C10) and human mesothelioma (MM) cells and after intrapleural or intranasal administration to C57BI/6 mice. ARMS coated with TEG (APMS-TEG) were most efficiently taken up by C10 and MM cells. The mechanism of cell uptake was rapid, actin-dependent, and did not involve clathrin- or caveolae-mediated mechanisms nor fusion of membrane-bound APMS with lysosomes. When injected intrapleurally in mice, APMS-TEG were taken up by both CD45-positive and -negative cells of the diaphragm, lung, and spleen, whereas APMS administered by the intranasal route were predominantly in lung epithelial cells and alveolar macrophages. After intrapleural or intranasal administration, APMS were nonimmunogenic and nontoxic as evaluated by differential cell counts and lactate dehydrogenase levels in bronchoalveolar and pleural lavage fluids. In the treatment of lung and pleural diseases, APMS-TEG may be useful tools to deliver chemotherapeutic drugs or molecular constructs.

Idioma originalInglés
Páginas (desde-hasta)333-342
Número de páginas10
PublicaciónAmerican Journal of Respiratory Cell and Molecular Biology
Volumen36
N.º3
DOI
EstadoPublicada - mar. 2007

Huella

Profundice en los temas de investigación de 'Unique uptake of acid-prepared mesoporous spheres by lung epithelial and mesothelioma cells'. En conjunto forman una huella única.

Citar esto