Variation of the energy functional of the reduced first-order density operator

T. Tung Nguyen-Dang, Eduardo V. Ludena, Y. Tal

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

39 Citas (Scopus)

Resumen

The equivalence between Fe[γ] and FP[γ] over p1n is shown, where Fe[γ] is the universal energy functional defined in the domain E1n of ensemble representable reduced first-order density operators γ, and Fp[γ], the corresponding functional over P1n, the set of pure state n-representable γ1s. The construction of Fe[γ] or equivalently of Fp[γ]n over P1n is considered by imposing the explicit requirement that Γ, the nth-order density operator, map into γ; this condition is introduced into the variational functional by means of a matrix α of Lagrange multipliers. The ensuing functional F[γ] is then used in order to obtain the Euler-Lagrange equations for the one-matrix γ. For the purpose of illustrating the present formalism, an explicit derivation of the Hartree-Fock equations as a particular case of the general Euler-Lagrange equations obtained herein, is given.

Idioma originalInglés
Páginas (desde-hasta)247-264
Número de páginas18
PublicaciónJournal of Molecular Structure: THEOCHEM
Volumen120
N.ºC
DOI
EstadoPublicada - feb. 1985
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Variation of the energy functional of the reduced first-order density operator'. En conjunto forman una huella única.

Citar esto