Virial fragments and the Hohenberg–Kohn functional

Eduardo V. Ludeña, Vladimiro Mujica

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Starting from the Hohenberg‐Kohn functional we show that when the energy density is given as a function of ρ and ∇ρ, i.e., ξ = ξ(ρ, ∇ρ), the condition ∇ρ · n = 0 (which was found by Bader et al. to define virial fragments), appears as a natural boundary condition for the variation of this functional. We also show that when the energy density includes second order derivatives (∇2ρ) this condition is necessary but not sufficient to guarantee the vanishing of the variation. The implications of these results are discussed in the context of a density functional theory for virial fragments.

Idioma originalInglés
Páginas (desde-hasta)927-935
Número de páginas9
PublicaciónInternational Journal of Quantum Chemistry
Volumen21
N.º5
DOI
EstadoPublicada - may. 1982
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Virial fragments and the Hohenberg–Kohn functional'. En conjunto forman una huella única.

Citar esto