Wheels are Cycle-Antimagic

Andrea Semaničová-Feňovčíková, Martin Bača, Marcela Lascsáková, Mirka Miller, Joe Ryan

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. An (a, d)-H-antimagic total labeling of a graph G admitting an H-covering is a bijective function from the vertex set V(G) and the edge set E(G) of the graph G onto the set of integers {1, 2, ..., |V(G)|+|E(G)|} such that for all subgraphs H' isomorphic to H, the sum of labels of all the edges and vertices belonging to H' constitute the arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super cycle-antimagic total labelings of wheel.

Idioma originalInglés
Páginas (desde-hasta)11-18
Número de páginas8
PublicaciónElectronic Notes in Discrete Mathematics
Volumen48
DOI
EstadoPublicada - 1 jul. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Wheels are Cycle-Antimagic'. En conjunto forman una huella única.

Citar esto