XNOR-Bitcount Operation Exploiting Computing-In-Memory With STT-MRAMs

Ariana Musello, Esteban Garzon, Marco Lanuzza, Luis Miguel Procel, Ramiro Taco

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)


This brief presents an energy-efficient and high-performance XNOR-bitcount architecture exploiting the benefits of computing-in-memory (CiM) and unique properties of spin-transfer torque magnetic RAM (STT-MRAM) based on double-barrier magnetic tunnel junctions (DMTJs). Our work proposes hardware and algorithmic optimizations, benchmarked against a state-of-the-art CiM-based XNOR-bitcount design. Simulation results show that our hardware optimization reduces the storage requirement (-50%) for each XNOR-bitcount operation. The proposed algorithmic optimization improves execution time and energy consumption by about 30% (78%) and 26% (85%), respectively, for single (5 sequential) 9-bit XNOR-bitcount operations. As a case study, our solution is demonstrated for shape analysis using bit-quads.

Idioma originalInglés
Páginas (desde-hasta)1259-1263
Número de páginas5
PublicaciónIEEE Transactions on Circuits and Systems II: Express Briefs
EstadoPublicada - 1 mar. 2023


Profundice en los temas de investigación de 'XNOR-Bitcount Operation Exploiting Computing-In-Memory With STT-MRAMs'. En conjunto forman una huella única.

Citar esto